Homework 13

P11.1.15 The switch in Figure P11.1.15 is moved to position 'b' at $t=$ 0 after being in position 'a' for a long time. Determine,

Figure P11.1.15 for $t \geq 0^{+}$: (a) $v_{c}(t)$ (b) $i_{c}(t)$ from initial and final values as well as from the $v-i$ relation for the capacitor.

Solution: (a) $v_{c}\left(0^{-}\right)=40 \times 60 / 80=30 \mathrm{~V}$; after the switch is moved to position 'b', $v_{c}(\infty)=-$ $75 \times 160 / 200=-60 \mathrm{~V}$; the resistance seen by C is:
$8+160 \| 40=8+32=40 \mathrm{k} \Omega ; \tau_{C}=40 \times 10^{-3} \times 0.25 \times 10^{-6}=10 \times 10^{-3} ; 1 / \tau_{C}=100 / \mathrm{s} ;$
$v_{c}(t)=-60+(30+60) e^{-100 t}=-60+90 e^{-100 t} \mathrm{~V}, t$ is in s .
(b) The circuit at $t=0^{+}$is a two-essential-node circuit. From KCL, $\frac{V_{a}-30}{8}+\frac{V_{a}}{160}+\frac{V_{a}+75}{40}=$ 0 ; this gives $V_{a}=12 \mathrm{~V}, i_{c}\left(0^{-}\right)=(12-30) / 8=$ $-2.25 \mathrm{~mA} . i_{c}(\infty)=0$, so that $i_{C}(t)=-2,25 e^{-100 t} \mathrm{~mA}$. From the $v-i$

relation for the capacitor $i_{C}(t)=C \frac{d v_{C}}{d t}=0.25 \times 10^{-6}\left(-9000 e^{-100 t}\right)=-2.25 e^{-100 t} \mathrm{~mA}$.

P 11.1 .23 The switch in Figure P 11.1 .23 is moved to position 'b' at $t=0$, after being in position ' a ' for a long time. Determine, for $t \geq 0^{+}$, (a) $v_{L}(t)$; (b) $i_{L}(t)$. A make-before-break switch is used to avoid open-circuiting the source.

Figure P11.1.23

Solution: (a) Just before the switch is moved, $I_{L 0}=4$ A. Just after the switch is moved, i_{L} remains the same and the 1 A source current flows through the 5Ω resistance, so $V_{L 0}=5 \mathrm{~V} ; V_{L F}=0$, and the time constant is $2 / 5=0.4 \mathrm{~s}$. Hence, $v_{L}=0+(5-0) e^{-2.5 t}=5 e^{-2.5 t} V$.
(b) $I_{L 0}=4 \mathrm{~A}$ and $I_{L F}=5 \mathrm{~A}$. Hence, $i_{L}=5-(4-5) e^{-2.5 t}=5-e^{-2.5 t} \mathrm{~A}$.

P11.1.27 The switch in Figure P11.1.27 is opened at $t=0$ after being closed for a long time. Determine $i_{L}(t)$ for $t \geq 0^{+}$.
Solution: After the switch has been closed for a long time, the inductor behaves as a short circuit, so that the voltage across it is zero. This means that there will be a current i_{L} flowing

Figure P11.1.27 downwards through the 2Ω resistor. KCL at the upper

Figure P11.1.27-1

P11.1.29 The switch in Figure P11.1.29, is closed at $t=0$ after being open for a long time. Determine $v_{o}(t)$ for $t \geq 0^{+}$.
Solution: When the switch has been open for a long time, the capacitor current is zero, so that

Figure P11.1.29
$V_{A}=4 \times 3=12 \mathrm{~V}$, and $v_{O}\left(0^{-}\right)=3 v_{\mathrm{A}}+24=60 \mathrm{~V}$. As $t \rightarrow \infty, V_{\mathrm{A}}=0$ and $V_{O F}=24 \mathrm{~V}$. To find the effective resistance across C, a test source V_{T} is applied in place of C, as shown. It is seen that $V_{T}=3 V_{\mathrm{A}}$, where $V_{\mathrm{A}}=2 I_{T}$; hence, $\frac{V_{T}}{I_{T}}=6 \mathrm{k} \Omega$, and $\tau=6 \times 20=120 \mathrm{~ms}$. It follows that $v_{o}(t)=24+48 e^{-t 0.12} \mathrm{~V}$, where t is in s.

Figure P11.1.29-1

P11.2.5 The switch in Figure P11.2.5 is moved to position 'b' at $t=0$ after having been in position ' a ' for a long time.

Determine $v_{o}(t)$ for $t \geq 0^{+}$.
Solution: When the switch is in position ' a ', the current in the 24 H inductor is 2 A . When

Figure P11.2.5 the switch is moved to position 'b', this current initially flows in the 40Ω resistor, producing an initial value of v_{0} that is $-2 \times 40=-80 \mathrm{~V}$. The final value of v_{0} is zero. The effective inductance is $\frac{12 \times 24}{36}=8 \mathrm{H}$. The time constant is $\frac{8}{40}=\frac{1}{5} \Omega$. It follows that: $v_{O}(t)=-80 e^{-5 t} \mathrm{~V}$.

P11.2.9 $R C=1 \mathrm{~ms}$ in Figure P11.2.9. Before the switch is closed, the circuit is in a steady state, with a total energy storage of 1 J . If the switch is closed at $t=0$, determine the total energy stored at $t=1 \mathrm{~ms}$.
Solution: When the switch is open, the capacitor voltages are equal, each capacitor storing 0.5 J . If the voltage across each

Figure P11.2.9 capacitor is $V_{c 0}$, then $0.5 C V_{C 0}^{2}=0.5 \mathrm{~J}$.

After the switched is closed, the voltage across the capacitor on the LHS is $V_{C O} \mathrm{e}^{-t / R C}$ and the voltage across the capacitor on the RHS is $V_{C O} \mathrm{e}^{-t / 2 R C}$. At $t=1 \mathrm{~ms}$, these voltages are $V_{C O} e^{-1}$ and $V_{C O} e^{-1 / 2}$. The stored energy is $0.5 C V_{C 0}^{2} e^{-2}+$ $0.5 C v_{C 0}^{2} e^{-1}$. Substituting $0.5 C V_{C 0}^{2}=0.5$, the total energy is $0.5\left(e^{-2}+e^{-1}\right)=0.25 \mathrm{~J}$.

P11.2.16 The switch in Figure P11.2.16 is moved at $t=0$ from position ' a ' to position 'b', after being in position ' a ' for a long time. Determine for $t \geq$ $0^{+}:(\mathrm{a}) i_{o}(t)$; (b) $v_{o}(t)$.
Solution: $L_{e q}=0.2+0.4-0.2=0.4 \mathrm{H}$. After the switch has been in position 'a' for a long time, the inductors behave as a

Figure P11.2.16

Figure P11.2.16-1

Figure P11.2.16-2

P11.2.17 The switch in Figure P11.2.17 is opened at $t=0$ with no energy initially stored in the circuit. Determine $v_{s}(t), t \geq 0^{+}$.
Solution: After the switch is opened, the current source partitions the circuit into two; $v_{c}(t)$ is that of an $R C$ parallel circuit charged by a 1 A source. $v_{C}\left(0^{+}\right)=0, V_{C F}=5 \mathrm{~V}$, and $\tau=0.5 \mathrm{~s}$. It follows that $v_{C}(t)=5\left(1-e^{-2 t}\right)$

Figure P11.2.17 V;
$V_{L}(t)$ is that of an $R L$ parallel circuit charged by a 1 A source. $v_{L}\left(0^{+}\right)=5 \mathrm{~V}, V_{L F}=0$, and $\tau=2.5 / 5=0.5 \quad t \geq 0^{+}$ follows that $v_{L}(t)=5 e^{-2 t} \mathrm{~V}$; hence, $v_{S}(t)=v_{C}(t)+v_{L}(t)=5 \mathrm{~V}$.

Figure P11.2.17-1

